97. Infrared Spectra and Structure of Some 1,3-Oxazine Derivatives.

By Z. ECKSTEIN, P. GLUZIŃSKI, W. HOFMAN, and T. URBAŃSKI.

Molecular refractivities and infrared absorption spectra have been determined for a number of 3,5-dialkyltetrahydro-5-nitro-1,3-oxazines, as well as for some analogues without nitro-groups (a total of 24 substances).

Values of $[M]_{\rm p}$ were lower than those calculated, which is explained as due to the influence of the heteroatoms in the ring.

Infrared bands in the regions 1150-1050, 955-925, and 855-800 cm.⁻¹ are now assigned to C-O-C acetal bonds, which confirm the acetal character of 1,3-oxazines. Probable assignments have been made for the various carbon-nitrogen bonds.

ONE of the characteristics of tetrahydro-5-nitro-1,3-oxazines¹ is hydrolysis in an acid medium, with the loss of one molecule of formaldehyde, to derivatives of 3-amino-2nitropropan-1-ol. This occurs readily under the action of hydrochloric acid in 80%ethanol² or of concentrated hydrochloric acid under ultraviolet irradiation.³ The ease of this reaction suggested that the C-O-C bond in 1,3-oxazines was mainly of hemiacetal character.⁴

To prove finally the cyclic structure of these compounds and to confirm the nature of the C-O-C bond the molecular refractivities and infrared absorption spectra of a few compounds of type (I) have now been investigated. A few absorption spectra of 1,3-oxazine derivatives have been published,⁵ but there has been no previous systematic investigation.

The products (I; R = Me or Et) were prepared by condensing nitroethane and 1nitropropane respectively with formaldehyde and treating the resulting 1,3-diols with formaldehyde and primary amines ranging from ammonia to hexylamine. Particular attention was paid to the purity of the products (I): they were distilled under reduced pressure, cyrstallised as hydrochlorides, recovered as bases and redistilled under reduced pressure.

For comparison, a few 1,3-oxazines without the nitro-group were also investigated, namely, (II)⁶ and the 5,6-dihydro-oxazine (III).⁷

EXPERIMENTAL

3,5-Dimethyltetrahydro-5-nitro-1,3-oxazine, prepared from 2-methyl-2-nitropropane-1,3diol, formaldehyde, and methylamine as described by Senkus¹ (yield 85.4%), had b. p. 85--- $86^{\circ}/0.7$ mm.

3-Ethyltetrahydro-5-methyl-5-nitro-1,3-oxazine. 2-Methyl-2-nitropropane-1,3-diol (0·2 mol., 27 g.) (prepared from nitroethane and formaldehyde) was dissolved in 60% aqueous ethylamine (0·2 mol., 15 g.) and mixed with 30% aqueous formaldehyde (0·2 mol., 20 ml.). The temperature rose by 55° and, after cooling, the whole was kept at room temperature for 48 hr. The colourless oily oxazine was extracted with ether, dried (Na₂SO₄), freed from ether and volatile substances on water-bath, and distilled under reduced pressure (101-103°/3 mm.) as a colourless oil which slowly darkened (28·6 g., 81·8%). This was treated in anhydrous alcohol with

¹ Hirst, Jones, Minahan, Ochynski, Thomas, and Urbański, J., 1947, 924; U.S.P. 2,447,822; Senkus, J. Amer. Chem. Soc., 1956, 72, 2968; Urbański, Nature, 1951, 168, 562; Urbański and Lipska, Roczniki Chem., 1952, 26, 182; Urbański and Gürne, *ibid.*, 1954, 28, 175; Urbański and Piotrowska, *ibid.*, 1955, 29, 379; Urbański and Kolesińska, *ibid.*, 1955, 29, 392; Urbański, Dabrowska, Lesiowska, and Piotrowska, *ibid.*, 1957, 31, 855.

² Eckstein, Sobótka, and Urbański, Roczniki Chem., 1956, 30, 132.

³ Gürne and Urbański, Roczniki Chem., 1957, **31**, 855; ibid., 1957, **31**, 869; J., 1959, 1912.

⁴ Urbański, Roczniki Chem., 1951, 25, 257.

⁵ Bergmann and Kaluszyner, Rec. Trav. chim., 1959, **78**, 315; O'Sullivan and Sadler, J., 1957, 2916; Urbański, Roczniki Chem., 1958, **32**, 241; Lacey and Ward, J., 1958, 2134; Lynn, J. Org. Chem., 1959, **24**, 711.

⁶ Kohn, Monatsh., 1904, 25, 817; Urbański and Gac-Chylińska, Roczniki Chem., 1956, 30, 185.

⁷ Eckstein, Majewski, and Gluziński, unpublished work.

 \mathbf{S}

alcoholic hydrochloric acid at 0°. The precipitated hydrochloride was washed with acetone, suspended in ether, and shaken with sodium hydrogen carbonate solution. The ethereal layer was dried and the free *oxazine* was distilled $84-85^{\circ}/0.2$ mm. (Found: N, $16\cdot4$. $C_7H_{14}O_3N_2$ requires N, $16\cdot1\%$).

The other *oxazines* listed in Table 1 were similarly prepared from 2-methyl- or 2-ethyl-2nitropropane-1,3-diol.

Refractivities were determined by means of Zeiss-Abbé model G refractometer at 20°. The calculated molecular refractivities are recorded in Table 2.

	Yield			Ν	(%)
3-Subst.	(%)	B. p./mm.	Formula	Found	Reqd.
5-Methyl derivatives					
Pr ⁿ	64	94°/0·3	C ₈ H ₁₆ O ₃ N ₂	14.7	14.9
Pr ⁱ ^{<i>a</i>}	68	98-99°/0·8			
Bu ⁿ	59	$92 - 94^{\circ} / 0 \cdot 2$	C ₉ H ₁₈ O ₃ N ₂	$14 \cdot 2$	$13 \cdot 85$
n-Pentyl	36	$100 - 101^{\circ} / 0.2$	$C_{10}H_{20}O_{3}N_{2}$	$13 \cdot 2$	12.95
n-Hexyl ^b	60	$141 - 142^{\circ}/2 \cdot 2$	$C_{11}H_{22}O_3N_2$	11.9	12.2
5-Ethyl derivatives					
Η ε		108—109°/1			
Me	75.5	$100 - 101^{\circ}/1.2$	C ₂ H ₁₄ O ₃ N ₂	16.4	16.1
Et	87	9899°/0·7	CH16ON	$15 \cdot 2$	14.9
Pr ⁿ	70	$103 - 105^{\circ} / 0.6$	$C_{9}H_{18}O_{3}N_{2}$	13.7	13.85
Pri	79	$103 - 105^{\circ} / 0.1$. 10 0 2	14.2	$13 \cdot 85$
Bu ^{n ø}	57	$111 - 112^{\circ} / 0.2$			
n-Pentyl	48	$116-117^{\circ}/0.4$	C11H22O2N2	$12 \cdot 1$	$12 \cdot 2$
n-Hexyl ^b	47	$129 - 130^{\circ} / 0.25$	$C_{12}H_{24}O_{3}N_{2}$	11.8	11.5

TABLE 1. 3,5-Dialkyltetrahydro-5-nitro-1,3-oxazines.

" Cf. Senkus."
 b Sufficient ethanol was added to give a homogeneous solution.
 c Cf. Hirst et al."

TABLE 2. Molecular refractivities of compounds (I).

$\mathbf{R'}$	d_{20}^{20}	n_{D}^{20}	Calc.*	Found	$\Delta[M]_{ m D}$
Me	1.1698	1.4725	38.89	38.38	0.51
\mathbf{Et}	1.1314	1.4700	43.54	42.96	0.58
\Pr^n	1.0984	1.4679	48.21	47.62	0.59
Pr^i	1.1081	1.4718	48.22	47.54	0.68
Bun	1.0698	1.4671	52.83	52.46	0.37
n-Pentyl	1.0547	1.4666	57.49	56.84	0.65
n-Hexyl	1.0394	1.4669	$62 \cdot 10$	61.46	0.64
н	1.2051	1.4816	38.76	37.87	0.89
Me	1.1377	1.4731	43.54	42.94	0.60
Et	1.1030	1.4704	48.19	47.64	0.55
\Pr^n	1.0862	1.4702	52.86	51.97	0.89
Pr^i	1.0884	1.4721	52.87	52.04	0.83
Bu ⁿ	1.0579	1.4694	57.48	56.98	0.50
n-Pentyl	1.0419	1.4687	$62 \cdot 14$	61.51	0.63
n-Hexyl	1.0285	1.4689	66.75	66.14	0.61
	${f R'}$ Me Et Pr ⁿ Pr ¹ Bu ⁿ n-Pentyl n-Hexyl H Me Et Pr ⁿ Pr ¹ Bu ⁿ n-Pentyl n-Hexyl	$\begin{array}{cccc} {\rm R}' & {\rm d}_{20}^{20} \\ {\rm Me} & 1\cdot 1698 \\ {\rm Et} & 1\cdot 1314 \\ {\rm Pr}^{\rm n} & 1\cdot 0984 \\ {\rm Pr}^{\rm l} & 1\cdot 1081 \\ {\rm Bu}^{\rm n} & 1\cdot 0698 \\ {\rm n-Pentyl} & 1\cdot 0547 \\ {\rm n-Hexyl} & 1\cdot 0394 \\ {\rm H} & 1\cdot 2051 \\ {\rm Me} & 1\cdot 1377 \\ {\rm Et} & 1\cdot 1030 \\ {\rm Pr}^{\rm n} & 1\cdot 0862 \\ {\rm Pr}^{\rm l} & 1\cdot 0884 \\ {\rm Bu}^{\rm n} & 1\cdot 0579 \\ {\rm n-Pentyl} & 1\cdot 0419 \\ {\rm n-Hexyl} & 1\cdot 0285 \\ \end{array}$	$\begin{array}{ccccc} {\rm R}' & d_{20}^{20} & n_{\rm D}{}^{20} \\ {\rm Me} & 1\cdot 1698 & 1\cdot 4725 \\ {\rm Et} & 1\cdot 1314 & 1\cdot 4700 \\ {\rm Pr}^{\rm n} & 1\cdot 0984 & 1\cdot 4679 \\ {\rm Pr}^{\rm i} & 1\cdot 1081 & 1\cdot 4718 \\ {\rm Bu}^{\rm n} & 1\cdot 0698 & 1\cdot 4671 \\ {\rm n-Pentyl} & 1\cdot 0547 & 1\cdot 4666 \\ {\rm n-Hexyl} & 1\cdot 0394 & 1\cdot 46669 \\ {\rm H} & 1\cdot 2051 & 1\cdot 4816 \\ {\rm Me} & 1\cdot 1377 & 1\cdot 4731 \\ {\rm Et} & 1\cdot 1030 & 1\cdot 4704 \\ {\rm Pr}^{\rm n} & 1\cdot 0862 & 1\cdot 4702 \\ {\rm Pr}^{\rm i} & 1\cdot 0884 & 1\cdot 4721 \\ {\rm Bu}^{\rm n} & 1\cdot 0579 & 1\cdot 4694 \\ {\rm n-Pentyl} & 1\cdot 0419 & 1\cdot 4687 \\ {\rm n-Hexyl} & 1\cdot 0285 & 1\cdot 4689 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

* The refractivity increments used in calculating $[M]_D$ were $-CH_2-4.647$; C 2.59; tert.-N 2.74; sec.-NH 3.61; -O- (as in acetals) 1.61; NO₂ aliph. 6.71; Me 5.65; Et 10.30; Prⁿ 14.97; Pr 14.98; Buⁿ 19.59; n-pentyl 24.25; n-hexyl 28.86.

Infrared absorption spectra were determined by means of a Hilger H-800 double-beam spectrophotometer with 60° prism of sodium chloride. Substances were used as liquids of capillary thickness. The frequencies were checked by means of a polystyrene film. The frequencies are recorded in Tables 3—5.

DISCUSSION

Molecular Refractivities.—Experimental values of the molecular refractivity were found to be lower than the calculated values ($\Delta[M]_p \ 0.4$ —0.9), as already noted by Bergmann and Kaluszyner ⁵ for tetrahydro-1,3-oxazine derivatives without the nitro-group. Small (three- and four-membered) and large (seven- and eight-membered) rings are sometimes

[1961]			and	1.5	Struc	tur	e o	f S	Som	e 1,3	-Oxa	zine	Deri	vati	ves.		491				
		Assignment N-H stratshing		C-H stratching of CH.	and CH ₂ groups			NO ₂ stretching assym. CH ₂ scissoring			NO, stretching symm.	NO ² stretching symm.? NO ₂ stretch. symm. or	CH2 wagging CH2 wagging	C–N?		C-O-C in ring		C-O-C in ring	}c−N−C and c−N∕C?	C-O-C in ring	
	Et	n-Hexyl	2912vs	9846	50 4 07	2766m		1542vs 1460s	5044T	1373s	13095	1337s $1325s$	1281w	1237m $1208s$	1171m 1129s 1106s	1095sh	1031w	966w 943s	914s 889s	850s 818w	724w
	Et	-Pentyl	2953s 2927s	9869c	2775m			1542vs 1460s	\$0++1	1378m	1359m	1338m $1325s$	1288w	1241w 1241w 1207s	1128s1106s	1082s	10225 1028m	966vw 947m	914m 894m	848m 818w	M001
s (I).	Et	Bu ⁿ n	2942s 2919s	9251c	2816sh	2761m		1543vs 1460s	14415	1375m 1375m	1359m	1341m $1326s$	1279w	1203s	1128s1103s	1086s	$\begin{array}{c} 1031 \mathrm{w} \\ 1031 \mathrm{w} \\ 1012 \mathrm{vw} \end{array}$	$963 \mathrm{w}$ $943 \mathrm{m}$	910m $894m$	849m 815vw	181W 735vw
рипофии	Et	Ъŗ.	2963s 2927sh	2874w	2807w	2745w	2607 vm	1543vs 1460s	1000	13801	1362m	1336sh 1324m	1281vw	$\begin{array}{c} 1231 \mathrm{s} \\ 1210 \mathrm{m} \end{array}$	1164w 1123s	1095sh 1085s 1085s	1031m 1031m 1014w	$\begin{array}{c} 981\mathrm{w}\\ 962\mathrm{vw}\\ 938\mathrm{m} \end{array}$	9091n 885w	852w 817w	MA001
-1) for co	Et	Pr^{n}	2954vs 2920s	9861c	2812s	2761s		1543vs 1461s	1440°	1390s 1378s	1359m	1342s $1325s$	1287m	12/3m 1244m 1211s	1127s $1104s$	1080vs	1030m 1030m 1015m	$ m 983w \\ m 967m \\ m 948s \\ m 948s$	912s 884s	849s 817w	11607
ies (cm. ⁻	Et	Et	$2980 \mathrm{s}$ $2943 \mathrm{m}$	2880m 9863ch	2826m 2774m		2709vw	1543vs 1460s	14425	1384m	1360m	1342m $1325s$		1222s	1136s $1108s$	1082s	1028vw 1028vw 1014vw	982w 967w 956w	$\begin{array}{c} 937m\\ 911m\\ 896m\end{array}$	842m .811vw	M 001
frequenc	Et	Me	2962s $2929m$	2873m	2785m	2736 sh	2704w	1542vs 1462s	1 11 05	1390m	1361m	1343m $1325s$	1280w	1236w 1236w 1212m	1143m 1131s 1117s	1099m 1085s	100.100 1045m 1025m	980w 964vw 947s	896m 881m	850s 817vw	M001
Infrared	Et	H 9954(5)	2926s 2976s 2927s	9860c	\$0007	2749vw		1540vs 1459s	115444	1391m	130/S	1341s $1324s$	1282w	1241m $1203w$	1160s 1118m	1099m $1064s$	1012s	951m	898s 887sh	849s 816sh	764m
BLE 3.	Me	n-Hexyl	2920s	984Ke	CPE07	$2769\mathrm{m}$ $2735\mathrm{w}$		1545vs 1457s	1400m	1379m	1349s		1308m $1279w$	1215m	$1176m \\ 1132m \\ 1107s$	1094s 1081s	1049III 1002w	982sh 949m	895m	869sh 850m	725w
T_{A1}	Me	-Pentyl	2941vs 2907s	9859c	S0007	$2765 \mathrm{m}$	2600 ww	1543vs 1453s	1400m	1376s	1348s		1306s 1277w	1210m	1135s 1104s	1076s	1040S 1004w	973vw 951m	892s	848s	
	Me	Bu ⁿ I	$2938_{ m S}$ 2918 $_{ m S}$	9851c	2802sh	2765m		1541vs 1453s	1399m	1376m	1348s		1308s $1277m$	1246w 1213s	1132s 1132s 1103s	1080s	1004w	977w 947s	893s	850s	
	Me	$\mathbf{P}_{\mathbf{r}^{i}}$	2979s 2937s 2908m	2878s 9844m	2821m	2756m	2613 vw	1545vs 1459s	1403m	1365s 1365s	1352s	1338m	1307s 1281 vw	1237s 1218s	$1167_{ m m}$ 1127s 1109s	1096sh 1081vs	1031m 1005vw	986w 946s	893s	855m 820w	755vw
	Me	Pr^{n}	2965s 2936s	2872s	$2824_{ m S}$ $2787_{ m S}$			1546vs 1458s	1402m	W1861	1350s		1307s $1277m$	1217s	1135s 1105s	1079s	1029m 1029m 1005m	990m 953s	897s	869m 850s	776w 754w
	Me	Et	2965s 2924m	$2860 \mathrm{m}$	$2810 \mathrm{m}$ $2773 \mathrm{m}$	$2755 \mathrm{m}$		1543vs 1455m	1402w	111091	1351m	$1320 \mathrm{sh}$	1308m	1219m	1135m $1105s$	1077s	1046m $1004w$	980vw 946m	892m	866vw 843m	
	R: Me	K': Me	2967sh 2936m	2872m	2776m		2640vw 2606vw	1644vs 1462s	1400m		1354s		1302m 1282m 1260m	1249m 1222m	1150m $1128m$ $1113s$	1080s	1042m	999w 947w	912m 897s	851m	

TABLE 4. Infrared frequencies (cm.⁻¹) of compounds (II).

3347m(b), 2994vs, 2948vs, 2928s, 2893s, 2757w, 2664w, 2613vw, 1459s, 1449s, 1385s, 1369s, 1343m, 1292m, 1260vs, 1212s, 1188s, 1146s, 1115s, 1097s, 1073s, 1043s, 1002vs, 925m, 805m, 818s, 772s, 751s.

TABLE 5.	Infrared	frequencies	(cm. ⁻¹) e	of compounds	(III).
----------	----------	-------------	------------------------	--------------	--------

A	<i>р</i> -	0-	m-	<i>p</i> -	<i>p</i> -	0- NO C H	2,3-	.
Ar: Ph	F ^C ₆ H ₄	CPC ₆ H ₄	CI-C ₆ H ₄	CI-C ₆ H ₄	Br·C ₆ H ₄	NO ₂ ·C ₆ H ₄	$(MeO)_2C_6H$	Assignment
3052w 3020w	3055w	3047w	3048w	3044w	3044w	3061w	3064w	C–H in arom. ring
2928m	2930m	2926s	2917s	2921s	2928m	2928m	2920s	١
2878m	2878m		2874m	2873m	2872w	2884m	2877sh	C-H stretch, in
2848m	2850m	2846m 2819m	2844m	2843 m	2846m	2851m	2835sh	$\int CH_2 \text{ groups}$
1649vs	1645 vs	1652 vs	1645vs	1644vs	1644vs	1659vs	1655 vs	C=N conj. with
1602w	1599s	1589m	1590m	1591s	1585s	1604m	1592m	
1580m		$1562 \mathrm{w}$	1567s			1572m	1575s	
					1520w	1522 vs		
1492m				1482s				
1471w	1468m	1465s	1469s	1470 sh	1471m	1466m	1469vs	
1448m	1434w	1 43 1s	1422s	1 433 m	1434w	1 43 4m	1439s 1415s	CH ₂ scissoring
				1394s	1390m			
1380w	1376w	1377m	1376w					
1349s	1348s	1346vs	1345 vs	1345 vs	1 343 s	1349 vs	1344 vs	CH_2 wagging
							1306s	
	1280s	1290 vs	1284s	1280s	1276s	1286s		
1274s	1270s		1255vs	1264 vs	1263s	1269s	1261 vs	
		1246s				1252s		
1226w	1216s	1221vw	1222m	1222w	1224w	1221w	1231vs	C-N?
1198vw	1150.	1195w	1195vw	1198vw	1198vw	1197vw	1181s	
1174w	1150s	1190	1101	1168m	1170m	1105	1100	`
11328	1128vs	1130VS	1131VS	1130VS	1131vs	1127VS	1130s	
11055	11038	1105vs	1000	1000vs	10985	11075	11195	C-O-C in ring
1079m		1071a	10905	109005	10670	10865	1084vs	0
1075111	1060m	10715 1057s	10745	1058m	10075	1065m	1057c	
103931	1033	1034s	1030m	1030	1030222	103011	10375	
1024m	1014m	1023sh	1000111	1014s	100000	1024w	10005	
1021111	1011111	101051	998w	10115	1008s	10210	1004s	
			941sh		10000		945w	
9 33 m	929w	927m	923m 896m	929w	928w	927m	923w	C-O-C in ring
885 vw		881vw	882m			878w	885w)
			862s			860m		C-N=C in ring?
856w	844s	852m		843s	835s	847m	836w]
805w	823s	805m	816m	803m	803m	806m	807m	C-O-C in ring
			795s				793m	5
783m	786w					78 3 s		
		764s				757m	762m	
	737m	733s	740s	733s	728m		750s	
		719s	711s			721s	708w	
694s								

characterised ⁸ by exaltation and depression, respectively. Isocyclic six-membered rings do not seem to produce any deviation of the molecular refractivity, but in our instance this may be the influence of two heteroatoms.

Infrared Absorption Spectra.—N-H stretching vibrations. The bands 3354 and 3347 cm.⁻¹ for the compounds (I; R = Et, R' = H) and (II) respectively should be assigned to stretching vibrations of the N-H group. The frequency is lowered by intermolecular hydrogen bonds.

Symmetrical C-H stretching vibrations. All the substances (I) examined give numerous bands of strong and medium intensity in the region 2980—2700 cm.⁻¹ which should be

⁸ Asmus, "Refraktometrie," in Houben-Weyl's "Methoden der Organischen Chemie," Thieme Stuttgart, 1955, Vol. III, Part 2.

assigned to symmetrical C-H stretching vibrations of methyl and methylene groups. It was difficult to differentiate between various bands by using only a sodium chloride prism; the bands in this region were particularly numerous for compounds of type (I).

Region 1659—1640 cm.⁻¹. These vibrations are present only for the compounds (III) which differ from (I) and (II) by the absence of O-C-N and the presence of O-C=N bonds. We suggest assigning these frequencies to C=N bonds conjugated with the aromatic ring. The frequencies are similar to C=N vibration frequencies observed by Bergmann et al.9 for aromatic Schiff's bases and by Lynn⁵ for derivatives of 2-alkenyl-5,6-dihydro-1,3oxazines.

Antisymmetrical NO₂ stretching vibrations. Very strong bands at 1546–1540 cm.⁻¹ are found in the spectra of compounds (I). Their frequency is shifted towards figures usually assigned to tertiary nitro-paraffins.¹⁰

Methylene scissoring vibrations. One strong band at 1463-1452 cm.⁻¹ is present for all the compounds (I). Another band, at 1445-1440 cm.⁻¹, was found in the spectra of the ethyl compounds (I; R = Et) but not in those of the methyl analogues (I; R = Me). This should probably be assigned to CH_2 vibrations of the ethyl group. Two strong bands, at 1459 and 1449 cm.⁻¹, are present in the spectrum of the compound (II). The compounds (III) give a band at 1448-1422 cm.⁻¹.

Symmetrical NO_2 stretching vibrations. High-intensity bands of frequency 1354— 1348 cm.⁻¹ are displayed by all the methyl compounds (I; R = Me). They should be assigned to symmetrical NO_2 stretching vibrations. However, the assignment is more complicated for the ethyl compounds (I; R = Et). Two bands near this frequency have

been observed: one of medium intensity at 1342-1336 cm.⁻¹, and a strong band at 1326-1324 cm.⁻¹. It is difficult to decide which of these two should be assigned to NO₂ vibrations. The former is nearer to the frequency observed with the compounds (I; R = Me) but its intensity is then anomalously low; nevertheless in view of the assignment of methylene wagging vibrations (see below) this frequency should be assigned to NO₂ stretching vibrations.

The difficulty of assigning symmetric nitro-group vibrations has been observed earlier by some of the present authors.¹¹

Methylene wagging vibrations. All the compounds (I; R = Me) show a frequency 1308—1302 cm.⁻¹ which should be assigned to methylene wagging vibrations, although it is unusually low. Again, with the compounds (I; R = Et) the assignment is more complicated and depends on that of symmetrical NO_2 vibrations. If the frequency 1342—1336 cm.⁻¹ is due to the latter vibrations, the frequency 1326—1324 cm.⁻¹ should be assigned to methylene wagging vibrations of the ethyl groups.

A medium-strength band at 1343 cm.⁻¹ in the spectrum of the compound (II) and strong bands at 1349-1343 cm.⁻¹ in the spectra of compounds (III) should also be assigned to methylene wagging vibrations.

Band at 1222-1203 cm.⁻¹. This is present in the spectra of all the compounds (I) examined, and in (II). For compounds (III) the frequency of this band is slightly higher (1231-1216 cm.⁻¹). It is probable that it corresponds to C-N vibrations, which are not sufficiently well described in the literature.¹²

⁹ Bergmann, Zimkin, and Pinchas, Rec. Trav. chim., 1952, 71, 168.
¹⁰ Brown, J. Amer. Chem. Soc., 1955, 77, 6341.
¹¹ Eckstein, Fluksik, and Sobótka, Bull. Acad. Polon. Sci., Sér. Sci. chim. géol. géograph., 1959, 7, 803. ¹² Colthup, J. Opt. Soc. Amer., 1950, **40**, 397.

1,3-Oxazine ring vibrations. According to the literature ⁵ the bands of the 1,3-oxazine ring lie in the region of 1150—1050 cm.⁻¹. In the spectra of the compounds (I) three strong bands with frequencies 1136—1117, 1113—1099 and 1086—1076 cm.⁻¹ were observed. The compound (II) gives strong bands at 1146, 1115, 1097, and 1073 cm.⁻¹, and the compounds (III) give bands at 1132—1127, 1119—1098, and 1086—1067 cm.⁻¹. In some instances the band is doubled (*e.g.*, for III where Ar = m-Cl·C₆H₄). The frequencies agree with the view expressed by Bergmann and his collaborators ^{5,9,13} who assigned these frequencies to vibrations of the system N–C–O in oxazolidines. Bergmann and Pinchas ¹⁴ had earlier found five bands for the bonds C–O–C in acetals and ketals; three of them (1143—1124, 1116—1105, and 1098—1063 cm.⁻¹) are found in our spectra. Lagrange and Mastagli, ¹⁵ and Barker, Bourne, Pinkard, and Whiffen, ¹⁶ are in agreement with Bergmann and Pinchas.

Also some lower-frequency bands of medium intensity, namely 953—937 and 855— 842 cm.⁻¹ for compounds (I), 925 and 818 cm.⁻¹ for (II), 933—927 and 823—803 cm.⁻¹ (of variable intensity) for compounds (III), are probably due to cyclic acetal vibrations, in agreement with Barker *et al.*¹⁶

Band near 890 cm.⁻¹. In the spectra of the compounds (I) bands of frequency 898---884 cm.⁻¹ are present. They correspond to the frequency 895 cm.⁻¹ for (II). It is difficult

to assign them to any known vibration and we suggest vibrations C-N-C and C-N \leq C

in the 1,3-oxazine ring. The frequency is lower for the compounds (III), 885-835 cm.⁻¹, owing to a different structure (C=N-C).

The absence of bands corresponding to O-H stretching vibrations in the spectra of the compounds (I) which were prepared from nitro-diols, formaldehyde, and ammonia or amines seems to be final evidence of their cyclic structure. At the same time a new proof has been found that the C-O-C fragment of the 1,3-oxazine ring is of acetal character.

ORGANIC CHEMICAL LABORATORIES, POLISH ACADEMY OF SCIENCES, WARSAW 10, POLAND. [Received, April 4th, 1960.]

¹³ Bergmann, Zimkin, and Pinchas, Rec. Trav. chim., 1952, 71, 237.

14 Bergmann and Pinchas, Rec. Trav. chim., 1952, 71, 161.

¹⁵ Lagrange and Mastagli, Compt. rend., 1955, 241, 1947.

¹⁶ Barker, Bourne, Pinkard, and Whiffen, J., 1959, 802, 807.