97. Infrared Spectra and Structure of Some 1,3-Oxazine Derivatives.

By Z. Eckstein, P. Gluziński, W. Hofman, and T. Urbański.

Molecular refractivities and infrared absorption spectra have been determined for a number of 3,5 -dialkyltetrahydro- 5 -nitro-1,3-oxazines, as well as for some analogues without nitro-groups (a total of 24 substances).

Values of $[M]_{\mathcal{D}}$ were lower than those calculated, which is explained as due to the influence of the heteroatoms in the ring.

Infrared bands in the regions 1150-1050, 955-925, and $855-800 \mathrm{~cm} .^{-1}$ are now assigned to $\mathrm{C}-\mathrm{O}-\mathrm{C}$ acetal bonds, which confirm the acetal character of 1,3 -oxazines. Probable assignments have been made for the various carbon-nitrogen bonds.
ONE of the characteristics of tetrahydro-5-nitro-1,3-oxazines ${ }^{\mathbf{1}}$ is hydrolysis in an acid medium, with the loss of one molecule of formaldehyde, to derivatives of 3 -amino-2-nitropropan-1-ol. This occurs readily under the action of hydrochloric acid in 80% ethanol ${ }^{2}$ or of concentrated hydrochloric acid under ultraviolet irradiation. ${ }^{3}$ The ease of this reaction suggested that the $\mathrm{C}-\mathrm{O}-\mathrm{C}$ bond in 1,3-oxazines was mainly of hemiacetal character. ${ }^{4}$

To prove finally the cyclic structure of these compounds and to confirm the nature of the $\mathrm{C}-\mathrm{O}-\mathrm{C}$ bond the molecular refractivities and infrared absorption spectra of a few compounds of type (I) have now been investigated. A few absorption spectra of 1,3-oxazine derivatives have been published, ${ }^{5}$ but there has been no previous systematic investigation.

The products ($\mathrm{I} ; \mathrm{R}=\mathrm{Me}$ or Et) were prepared by condensing nitroethane and $\mathbf{1}$ nitropropane respectively with formaldehyde and treating the resulting 1,3 -diols with formaldehyde and primary amines ranging from ammonia to hexylamine. Particular attention was paid to the purity of the products (I) : they were distilled under reduced pressure, cyrstallised as hydrochlorides, recovered as bases and redistilled under reduced pressure.

For comparison, a few 1,3-oxazines without the nitro-group were also investigated, namely, (II) ${ }^{6}$ and the 5,6-dihydro-oxazine (III). ${ }^{7}$

Experimental

3,5-Dimethyltetrahydro-5-nitro-1,3-oxazine, prepared from 2 -methyl-2-nitropropane-1,3diol, formaldehyde, and methylamine as described by Senkus ${ }^{1}$ (yield $85 \cdot 4 \%$), had b. p. $85-$ $86^{\circ} / 0 \cdot 7 \mathrm{~mm}$.

3-Ethyltetrahydro-5-methyl-5-nitro-1,3-oxazine. 2-Methyl-2-nitropropane-1,3-diol ($0 \cdot 2 \mathrm{~mol}$, 27 g.) (prepared from nitroethane and formaldehyde) was dissolved in 60% aqueous ethylamine $(0.2$ mol., 15 g .) and mixed with 30% aqueous formaldehyde ($0.2 \mathrm{~mol} ., 20 \mathrm{ml}$.). The temperature rose by 55° and, after cooling, the whole was kept at room temperature for 48 hr . The colourless oily oxazine was extracted with ether, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, freed from ether and volatile substances on water-bath, and distilled under reduced pressure ($101-103^{\circ} / 3 \mathrm{~mm}$.) as a colourless oil which slowly darkened (28.6 g ., $8 \mathrm{l} \cdot 8 \%$). This was treated in anhydrous alcohol with

[^0]alcoholic hydrochloric acid at 0°. The precipitated hydrochloride was washed with acetone, suspended in ether, and shaken with sodium hydrogen carbonate solution. The ethereal layer was dried and the free oxazine was distilled $84-85^{\circ} / 0 \cdot 2 \mathrm{~mm}$. (Found: $\mathrm{N}, 16 \cdot 4 . \mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~N}_{2}$ requires $\mathrm{N}, 16 \cdot 1 \%$).

The other oxazines listed in Table 1 were similarly prepared from 2 -methyl- or 2 -ethyl- 2 -nitropropane-1,3-diol.

Refractivities were determined by means of Zeiss-Abbé model G refractometer at 20°. The calculated molecular refractivities are recorded in Table 2.

TABLE 1. 3,5-Dialkyltetrahydro-5-nitro-1,3-oxazines.

3-Subst. 5-Methyl derivatives	$\begin{aligned} & \text { Yield } \\ & \text { (\%) } \end{aligned}$	B. p. $/ \mathrm{mm}$.	Formula	N (\%)	
				Found	Reqd
$\mathrm{Pr}^{\mathrm{n}} .$.	64	$94^{\circ} / 0 \cdot 3$	$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~N}_{2}$	$14 \cdot 7$	$14 \cdot 9$
Pria	68	98- $99^{\circ} / 0 \cdot 8$			
Bu ${ }^{\text {n }}$	59	$92-94^{\circ} / 0 \cdot 2$	$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}_{2}$	$14 \cdot 2$	13.85
n-Pentyl	36	$100-101^{\circ} / 0 \cdot 2$	$\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}_{2}$	$13 \cdot 2$	12.95
n-Hexyl ${ }^{\text {b }}$..............	60	141-142 ${ }^{\circ} / 2 \cdot 2$	$\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~N}_{2}$	11.9	$12 \cdot 2$
5-Ethyl derivatives					
$\mathrm{H}^{\text {c }}$	--	108-109 ${ }^{\circ} 1$	-	-	-
Me	75.5	100-101 $/ 1 \cdot 2$	$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~N}_{2}$	16.4	$16 \cdot 1$
Et	87	98-99 ${ }^{\circ} 10 \cdot 7$	$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~N}_{2}$	$15 \cdot 2$	$14 \cdot 9$
Prn	70	103-105 $/ 0 \cdot 6$	$\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}_{2}$	$13 \cdot 7$	13.85
Pr^{1}	79	$103-105^{\circ} / 0 \cdot \mathrm{I}$		$14 \cdot 2$	$13 \cdot 85$
$\mathrm{Bu}^{\mathrm{n}}{ }^{\text {a }}$	57	$111-112^{\circ} / 0 \cdot 2$	--		-
n-Pentyl	48	$116-117^{\circ} / 0 \cdot 4$	$\mathrm{C}_{11} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~N}_{2}$	$12 \cdot 1$	12.2
n -Hexyl ${ }^{\text {b }}$	47	129-130\% $/ 0 \cdot 25$	$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~N}_{2}$	11.8	11.5

${ }^{a}$ Cf. Senkus. ${ }^{1}{ }^{b}$ Sufficient ethanol was added to give a homogeneous solution. ${ }^{c}$ Cf. Hirst et al. ${ }^{1}$

Table 2. Molecular refractivities of compounds (I).

			$[M]_{\mathrm{D}}$			
R	R^{\prime}	d_{20}^{20}	$n_{\text {D }}{ }^{20}$	Calc.*	Found	$\Delta[M]_{\text {d }}$
Me	Me	1-1698	1.4725	$38 \cdot 89$	$38 \cdot 38$	0.51
Me	Et	1-1314	$1 \cdot 4700$	$43 \cdot 54$	$42 \cdot 96$	0.58
Me	Pr^{n}	$1 \cdot 0984$	1-4679	$48 \cdot 21$	$47 \cdot 62$	0.59
Me	Pr^{1}	1-1081	$1 \cdot 4718$	$48 \cdot 22$	$47 \cdot 54$	0.68
Me	$\mathrm{Bu}^{\text {n }}$	$1 \cdot 0698$	$1 \cdot 4671$	$52 \cdot 83$	$52 \cdot 46$	0.37
Me	n -Pentyl	$1 \cdot 0547$	$1 \cdot 4666$	$57 \cdot 49$	$56 \cdot 84$	$0 \cdot 65$
Me	n -Hexyl	$1 \cdot 0394$	$1 \cdot 4669$	$62 \cdot 10$	$61 \cdot 46$	$0 \cdot 64$
Et	H	$1 \cdot 2051$	1-4816	38.76	$37 \cdot 87$	$0 \cdot 89$
Et	Me	$1 \cdot 1377$	1-4731	$43 \cdot 54$	$42 \cdot 94$	$0 \cdot 60$
Et	Et	1-1030	1-4704	$48 \cdot 19$	$47 \cdot 64$	$0 \cdot 55$
Et	Pr ${ }^{\text {n }}$	$1 \cdot 0862$	1-4702	$52 \cdot 86$	51.97	$0 \cdot 89$
Et	Pr^{1}	$1 \cdot 0884$	1-4721	$52 \cdot 87$	$52 \cdot 04$	$0 \cdot 83$
Et	$\mathrm{Bu}^{\text {n }}$	1.0579	1-4694	$57 \cdot 48$	56.98	0.50
Et	n -Pentyl	$1 \cdot 0419$	1-4687	$62 \cdot 14$	61.51	$0 \cdot 63$
Et	n -Hexyl	$1 \cdot 0285$	1-4689	66.75	$66 \cdot 14$	$0 \cdot 61$

* The refractivity increments used in calculating $[M]_{\mathrm{D}}$ were $-\mathrm{CH}_{2}-4.647$; C 2.59 ; tert.- N 2.74 ; sec.-NH 3.61 ; -O - (as in acetals) 1.61 ; NO_{2} aliph. 6.71; Me 5.65 ; Et 10.30 ; $\operatorname{Pr}^{\mathrm{n}} 14.97$; Pr 14.98; $\mathrm{Bu}^{\mathrm{n}} 19.59$; n-pentyl $24 \cdot 25$; n-hexyl 28.86 .

Infrared absorption spectra were determined by means of a Hilger H-800 double-beam spectrophotometer with 60° prism of sodium chloride. Substances were used as liquids of capillary thickness. The frequencies were checked by means of a polystyrene film. The frequencies are recorded in Tables 3-5.

Discussion

Molecular Refractivities.-Experimental values of the molecular refractivity were found to be lower than the calculated values $\left(\Delta[M]_{\mathrm{D}} 0.4-0.9\right)$, as already noted by Bergmann and Kaluszyner ${ }^{5}$ for tetrahydro-1,3-oxazine derivatives without the nitro-group. Small (three- and four-membered) and large (seven- and eight-membered) rings are sometimes
先
范

Table 4. Infrared frequencies (cm. ${ }^{-1}$) of compounds (II). $3347 \mathrm{~m}(\mathrm{~b}), 2994 \mathrm{vs}, 2948 \mathrm{vs}, 2928 \mathrm{~s}, 2893 \mathrm{~s}, 2757 \mathrm{w}, 2664 \mathrm{w}, 2613 \mathrm{vw}, 1459 \mathrm{~s}, 1449 \mathrm{~s}, 1385 \mathrm{~s}, 1369 \mathrm{~s}, 1343 \mathrm{~m}$, $1292 \mathrm{~m}, 1260 \mathrm{vs}, 1212 \mathrm{~s}, 1188 \mathrm{~s}, 1146 \mathrm{~s}, 1115 \mathrm{~s}, 1097 \mathrm{~s}, 1073 \mathrm{~s}, 1043 \mathrm{~s}, 1002 \mathrm{vs}, 925 \mathrm{~m}, 895 \mathrm{~m}, 818 \mathrm{~s}, 772 \mathrm{~s}$, 751s.

Table 5. Infrared frequencies (cm. ${ }^{-1}$) of compounds (III).

Ar: Ph	$\stackrel{p-}{\mathrm{F} \cdot \mathrm{C}_{6} \mathrm{H}_{4}}$	$\stackrel{\stackrel{O-}{\mathrm{Cl}} \cdot \mathrm{C}_{6} \mathrm{H}_{4}}{\text { (}}$	$\stackrel{m-}{\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4}}$	$\stackrel{p-}{\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4}}$	$\stackrel{p-}{\mathrm{Br} \cdot \mathrm{C}_{6} \mathrm{H}_{4}}$	$\mathrm{NO}_{2} \stackrel{\mathrm{O}_{6}-}{ } \mathrm{C}_{6} \mathrm{H}_{4}$	$\stackrel{2,3-}{(\mathrm{MeO})_{2} \mathrm{C}_{6} \mathrm{H}_{3}}$	3 Assignment	
3052 w	3055w	3047w	3048w	3044w	3044w	3061 w	3064 w	$\mathrm{C}-\mathrm{H}$ in arom. ring	
3020 w									
2928 m	2930 m	2926s	2917s	2921s	2928m	2928 m	2920s		
2878 m	2878 m		2874 m	2873m	2872w	2884 m	2877sh	$\mathrm{C}-\mathrm{H}$ stretch. in CH_{2} groups	
2848 m	2850 m	$\begin{aligned} & 2846 \mathrm{~m} \\ & 2819 \mathrm{~m} \end{aligned}$	2844 m	2843m	2846 m	2851 m	2835sh		
1649vs	1645vs	1652 vs	1645vs	1644 vs	1644 vs	1659vs	1655 vs	$\mathrm{C}=\mathrm{N}$ conj. with arom. ring	
1602w	1599s	1589m	1590 m	1591s	1585 s	1604 m	$\begin{aligned} & 1592 \mathrm{~m} \\ & 1575 \mathrm{~s} \end{aligned}$		
1580 m		1562w	1567s			1572 m			
					1520w	1522 vs			
1492 m 1471w 1448 m	$\begin{aligned} & 1468 \mathrm{~m} \\ & 1434 \mathrm{w} \end{aligned}$	$\begin{aligned} & 1465 \mathrm{~s} \\ & 1431 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 1469 \mathrm{~s} \\ & 1422 \mathrm{~s} \end{aligned}$	1482s	$\begin{aligned} & 1471 \mathrm{~m} \\ & 1434 \mathrm{w} \end{aligned}$		$\begin{aligned} & 1469 \mathrm{vs} \\ & 1439 \mathrm{~s} \\ & 1415 \mathrm{~s} \end{aligned}$	CH_{2} scissoring	
				$\begin{aligned} & \text { 1470sh } \\ & 1433 \mathrm{~m} \end{aligned}$		$\begin{aligned} & 1466 \mathrm{~m} \\ & 1434 \mathrm{~m} \end{aligned}$			
				1394s	1390m				
1380w	1376w	1377 m	1376w					CH_{2} wagging	
1349s	1348s	1346 vs	1345vs	1345vs	1343s	1349vs	$\begin{aligned} & 1344 \mathrm{vs} \\ & 1306 \mathrm{~s} \end{aligned}$		
	1280s	1290vs	1284s	1280s	1276s	1286s			
1274s	1270s		1255vs	1264vs	1263s	1269s	1261vs	$\mathrm{C}-\mathrm{N} ?$	
		1246s				1252s			
1226w	1216s	$\begin{aligned} & \text { l221vw } \\ & \text { l195w } \end{aligned}$	1222 m	1222w	1224w	1221w	1231 vs		
1198 vw			1195vw	$\begin{aligned} & 1198 \mathrm{vw} \\ & 1168 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1198 \mathrm{vw} \\ & 1170 \mathrm{~m} \end{aligned}$	1197 vw	1181 s		
1174w	1150s								
1132s	1128vs	1130vs	1131vs	1130 vs	l131vs	1127 vs	1130 s		
1105s	1103 s	1105vs	1109s	1100 vs	1098s	1107s	1119 s	$\mathrm{C}-\mathrm{O}-\mathrm{C}$ in ring	
			1090s	1090 vs		1086s	1084vs		
1073m		1071s	1074s		1067s	$1065 \mathrm{~m} \quad 1057 \mathrm{~s}$			
	1060 m	1057s		1058 m					
1039w	1033 vw	1034s	1039m	1030vw	1030vw	1039w	1033s		
1024 m	1014 m	1023sh		1014s		1024w			
			998w		1008s		1004s		
			941 sh				945w		
933m	929w	927 m	$\begin{aligned} & 923 \mathrm{~m} \\ & 896 \mathrm{~m} \end{aligned}$	929w	928w	927 m	923w	$\mathrm{C}-\mathrm{O}-\mathrm{C}$ in ring	
885 vw		881 lvw	$\begin{aligned} & 882 \mathrm{~m} \\ & 862 \mathrm{~s} \end{aligned}$			878w			
						$\begin{aligned} & 860 \mathrm{~m} \\ & 847 \mathrm{~m} \end{aligned}$			
$\begin{aligned} & 856 \mathrm{w} \\ & 805 \mathrm{w} \end{aligned}$	$\begin{aligned} & 844 \mathrm{~s} \\ & 823 \mathrm{~s} \end{aligned}$	852 m		$\begin{aligned} & 843 \mathrm{~s} \\ & 803 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 835 \mathrm{~s} \\ & 803 \mathrm{~m} \end{aligned}$		836w		
		805 m	$\begin{aligned} & 816 \mathrm{~m} \\ & 795 \mathrm{~s} \end{aligned}$			806 m	$\begin{aligned} & 807 \mathrm{~m} \\ & 793 \mathrm{~m} \end{aligned}$	$\mathrm{C}-\mathrm{O}-\mathrm{C}$ in ring	
783 m	786w	$\begin{array}{r} 764 \mathrm{~s} \\ 733 \mathrm{~s} \\ 719 \mathrm{~s} \end{array}$				783s			
			$\begin{gathered} 740 \mathrm{~s} \\ 711 \mathrm{~s} \end{gathered}$	733s	728m	757 m	762 m		
	737 m					721 s	$\begin{aligned} & 750 \mathrm{~s} \\ & 708 \mathrm{w} \end{aligned}$		
694 s									

characterised ${ }^{8}$ by exaltation and depression, respectively. Isocyclic six-membered rings do not seem to produce any deviation of the molecular refractivity, but in our instance this may be the influence of two heteroatoms.

Infrared Absorption Spectra.-N-H stretching vibrations. The bands 3354 and 3347 $\mathrm{cm} .{ }^{-1}$ for the compounds ($\mathrm{I} ; \mathrm{R}=\mathrm{Et}, \mathrm{R}^{\prime}=\mathrm{H}$) and (II) respectively should be assigned to stretching vibrations of the $\mathrm{N}-\mathrm{H}$ group. The frequency is lowered by intermolecular hydrogen bonds.

Symmetrical $\mathrm{C}-\mathrm{H}$ stretching vibrations. All the substances (I) examined give numerous bands of strong and medium intensity in the region $2980-2700 \mathrm{~cm} .^{-1}$ which should be

[^1]assigned to symmetrical $\mathrm{C}-\mathrm{H}$ stretching vibrations of methyl and methylene groups. It was difficult to differentiate between various bands by using only a sodium chloride prism; the bands in this region were particularly numerous for compounds of type (I).

Region 1659-1640 cnl. ${ }^{-1}$. These vibrations are present only for the compounds (III) which differ from (I) and (II) by the absence of $\mathrm{O}-\mathrm{C}-\mathrm{N}$ and the presence of $\mathrm{O}-\mathrm{C}=\mathrm{N}$ bonds. We suggest assigning these frequencies to $\mathrm{C}=\mathrm{N}$ bonds conjugated with the aromatic ring. The frequencies are similar to $\mathrm{C}=\mathrm{N}$ vibration frequencies observed by Bergmann et al. ${ }^{9}$ for aromatic Schiff's bases and by Lynn ${ }^{5}$ for derivatives of 2 -alkenyl- 5,6 -dihydro-1,3oxazines.

Antisymmetrical NO_{2} stretching vibrations. Very strong bands at $1546-1540 \mathrm{~cm} .^{-1}$ are found in the spectra of compounds (I). Their frequency is shifted towards figures usually assigned to tertiary nitro-paraffins. ${ }^{10}$

Methylene scissoring vibrations. One strong band at $1463-1452 \mathrm{~cm} .^{-1}$ is present for all the compounds (I). Another band, at $1445-1440 \mathrm{~cm} .^{-1}$, was found in the spectra of the ethyl compounds ($\mathrm{I} ; \mathrm{R}=\mathrm{Et}$) but not in those of the methyl analogues ($\mathrm{I} ; \mathrm{R}=\mathrm{Me}$). This should probably be assigned to CH_{2} vibrations of the ethyl group. Two strong bands, at 1459 and $1449 \mathrm{~cm} .{ }^{-1}$, are present in the spectrum of the compound (II). The compounds (III) give a band at $1448-1422 \mathrm{~cm}^{-1}$.

Symmetrical NO_{2} stretching vibrations. High-intensity bands of frequency 1354 $1348 \mathrm{~cm} .^{-1}$ are displayed by all the methyl compounds ($\mathrm{I} ; \mathrm{R}=\mathrm{Me}$). They should be assigned to symmetrical NO_{2} stretching vibrations. However, the assignment is more complicated for the ethyl compounds ($\mathrm{I} ; \mathrm{R}=\mathrm{Et}$). Two bands near this frequency have

(I)

(II)

(III)
been observed: one of medium intensity at $1342-1336 \mathrm{~cm} .^{-1}$, and a strong band at 1326 $1324 \mathrm{~cm} .^{-1}$. It is difficult to decide which of these two should be assigned to NO_{2} vibrations. The former is nearer to the frequency observed with the compounds ($\mathrm{I} ; \mathrm{R}=\mathrm{Me}$) but its intensity is then anomalously low; nevertheless in view of the assignment of methylene wagging vibrations (see below) this frequency should be assigned to NO_{2} stretching vibrations.

The difficulty of assigning symmetric nitro-group vibrations has been observed earlier by some of the present authors. ${ }^{11}$

Methylene wagging vibrations. All the compounds ($\mathrm{I} ; \mathrm{R}=\mathrm{Me}$) show a frequency $1308-1302 \mathrm{~cm} .^{-1}$ which should be assigned to methylene wagging vibrations, although it is unusually low. Again, with the compounds ($\mathrm{I} ; \mathrm{R}=\mathrm{Et}$) the assignment is more complicated and depends on that of symmetrical NO_{2} vibrations. If the frequency $1342-1336 \mathrm{~cm} .^{-1}$ is due to the latter vibrations, the frequency $1326-1324 \mathrm{~cm}^{-1}$ should be assigned to methylene wagging vibrations of the ethyl groups.

A medium-strength band at $1343 \mathrm{~cm} .^{-1}$ in the spectrum of the compound (II) and strong bands at 1349-1343 cm..$^{-1}$ in the spectra of compounds (III) should also be assigned to methylene wagging vibrations.

Band at 1222-1203 cm^{-1}. This is present in the spectra of all the compounds (I) examined, and in (II). For compounds (III) the frequency of this band is slightly higher ($1231-1216 \mathrm{~cm} .^{-1}$). It is probable that it corresponds to $\mathrm{C}-\mathrm{N}$ vibrations, which are not sufficiently well described in the literature. ${ }^{12}$

[^2]1,3-Oxazine ring vibrations. According to the literature ${ }^{5}$ the bands of the 1,3-oxazine ring lie in the region of $1150-1050 \mathrm{~cm} .^{-1}$. In the spectra of the compounds (I) three strong bands with frequencies $1136-1117,1113-1099$ and $1086-1076 \mathrm{~cm} .^{-1}$ were observed. The compound (II) gives strong bands at $1146,1115,1097$, and $1073 \mathrm{~cm}^{-1}$, and the compounds (III) give bands at 1132-1127, 1119-1098, and 1086-1067 cm. ${ }^{-1}$. In some instances the band is doubled (e.g., for III where $\mathrm{Ar}=m-\mathrm{Cl} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$). The frequencies agree with the view expressed by Bergmann and his collaborators ${ }^{5,9,13}$ who assigned these frequencies to vibrations of the system N-C-O in oxazolidines. Bergmann and Pinchas ${ }^{14}$ had earlier found five bands for the bonds $\mathrm{C}-\mathrm{O}-\mathrm{C}$ in acetals and ketals; three of them ($1143-1124,1116-1105$, and $1098-1063 \mathrm{~cm} .^{-1}$) are found in our spectra. Lagrange and Mastagli, ${ }^{15}$ and Barker, Bourne, Pinkard, and Whiffen, ${ }^{16}$ are in agreement with Bergmann and Pinchas.

Also some lower-frequency bands of medium intensity, namely 953-937 and 855$842 \mathrm{~cm} .^{-1}$ for compounds (I), 925 and $818 \mathrm{~cm} .^{-1}$ for (II), $933-927$ and $823-803 \mathrm{~cm} .^{-1}$ (of variable intensity) for compounds (III), are probably due to cyclic acetal vibrations, in agreement with Barker et al. ${ }^{16}$

Band near $890 \mathrm{~cm} .^{-1}$. In the spectra of the compounds (I) bands of frequency 898 $884 \mathrm{~cm} .{ }^{-1}$ are present. They correspond to the frequency $895 \mathrm{~cm} .^{-1}$ for (II). It is difficult to assign them to any known vibration and we suggest vibrations $\mathrm{C}-\mathrm{N}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}-\mathrm{C}$ in the 1,3 -oxazine ring. The frequency is lower for the compounds (III), $885-835 \mathrm{~cm} .^{-1}$, owing to a different structure ($\mathrm{C}=\mathrm{N}-\mathrm{C}$).

The absence of bands corresponding to $\mathrm{O}-\mathrm{H}$ stretching vibrations in the spectra of the compounds (I) which were prepared from nitro-diols, formaldehyde, and ammonia or amines seems to be final evidence of their cyclic structure. At the same time a new proof has been found that the $\mathrm{C}-\mathrm{O}-\mathrm{C}$ fragment of the 1,3 -oxazine ring is of acetal character.

[^3]
[^0]: ${ }^{1}$ Hirst, Jones, Minahan, Ochynski, Thomas, and Urbański, J., 1947, 924; U.S.P. 2,447,822; Senkus, J. Amer. Chem. Soc., 1956, 72, 2968; Urbański, Nature, 1951, 168, 562; Urbański and Lipska, Roczniki Chem., 1952, 26, 182; Urbański and Gürne, ibid., 1954, 28, 175; Urbański and Piotrowska, ibid., 1955, 29, 379; Urbański and Kolesińska, ibid., 1955, 29, 392; Urbański, Dabrowska, Lesiowska, and Piotrowska, ibid., 1957, 31, 855.
 ${ }^{2}$ Eckstein, Sobótka, and Urbański, Roczniki Chem., 1956, 30, 132.
 ${ }^{3}$ Gürne and Urbański, Roczniki Chem., 1957, 31, 855; ibid., 1957, 31, 869; J., 1959, 1912.
 ${ }^{4}$ Urbański, Roczniki Chem., 1951, 25, 257.
 ${ }_{5}$ Bergmann and Kaluszyner, Rec. Trav. chim., 1959, 78, 315; O'Sullivan and Sadler, J., 1957, 2916; Urbański, Roczniki Chem., 1958, 32, 241; Lacey and Ward, J., 1958, 2134; Lynn, J. Ovg. Chem., 1959, 24, 711.
 ${ }^{6}$ Kohn, Monatsh., 1904, 25, 817; Urbański and Gac-Chylińska, Roczniki Chem., 1956, 30, 185.
 ${ }^{7}$ Eckstein, Majewski, and Gluziński, unpublished work.

[^1]: ${ }^{\text {s }}$ Asmus, " Refraktometrie," in Houben-Weyl's " Methoden der Organischen Chemie," Thieme Stuttgart, 1955, Vol. III, Part 2.

[^2]: ${ }^{9}$ Bergmann, Zimkin, and Pinchas, Rec. Tvav. chim., 1952, 71, 168.
 10 Brown, J. Amer. Chem. Soc., 1955, rry, 6341.
 ${ }^{11}$ Eckstein, Fluksik, and Sobótka, Bull. Acad. Polon. Sci., Sér. Sci. chim. géol. géograph., 1959, y, 803.
 ${ }^{12}$ Colthup, J. Opt. Soc. Amer., 1950, 40, 397.

[^3]: Organic Chemical Laboratories, Polish Academy of Sciences, Warsaw 10, Poland.
 [Received, April 4th, 1960.]
 ${ }^{13}$ Bergmann, Zimkin, and Pinchas, Rec. Trav. chim., 1952, 71, 237.
 ${ }_{14}$ Bergmann and Pinchas, Rec. Trav. chim., 1952, 71, 161.
 ${ }^{15}$ Lagrange and Mastagli, Compt. rend., 1955, 241, 1947.
 ${ }^{16}$ Barker, Bourne, Pinkard, and Whiffen, J., 1959, 802, 807.

